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Summary: 
 

We created optimized implementations of gradient descent on both GPU and multi-core 

CPU platforms, and perform a detailed analysis of both systems’ performance characteristics. 

The GPU implementation was done using CUDA, whereas the multi-core CPU implementation 

was done with OpenMP.  

 

Background: 
 

Gradient descent is a technique used to find a minimum using numerical analysis in times 

where directly computing the minimum analytically is too hard or even infeasible. The idea 

behind the algorithm is simple. At any given point in time, you determine the effect of modifying 

your input variable on the cost function you are trying to minimize. In the one dimensional case, 

if increasing the value of your input decreases your cost function, then you can increase the value 

of your input by a small step to get you closer to the minimum cost. Generalizing to higher 

dimensions, the gradient tells you the direction of the greatest increase on your cost function, so 

you can move the input in the opposite direction to hopefully decrease the value of the cost 

function.  

 

1 



 

Building on top of this idea, there are two kinds of gradient descent methods. One is 

called batch gradient descent (BGD) and the other is stochastic gradient descent (SGD). Let’s 

discuss both. We can imagine we have some regression problem where we are trying to estimate 

some function . We are given n labeled data points of the form . Our job is to find(x)f x , f (x ))( i  i  

some estimator, of the desired function such that we minimize the mean squared error,(x)gw  

. Formally, we let ​w​ be a vector representing all the parameters of(w) (f (x ) (x ))J =  n
1 ∑

n

i =1
i − gw i

2  

of the function . Our goal is to find the optimal ​w​ that minimizes our cost function.  Now in(x)gw  

order to find the true gradient of our cost function, we would need to plug in all our points. This 

is what is known as batch gradient descent. The update step looks like the following: 

 w  η ∇J(w)wi+1 =  i −   

Here, we do the above for each element of our vector ​w​ and move with some small step 

size η. If n is large, however, this computation can be very expensive especially since at each 

time step we only make a small modification. Thus, it does not always make sense to do such a 

heavy computation to make a tiny step forward. In contrast, stochastic gradient descent chooses a 

random data point to determine the gradient. This gradient is much noisier since it doesn’t have 

the whole picture, but it can greatly speed-up performance. In most cases, it is best to start with 

stochastic gradient descent, but then eventually switch to batch for fine-grained movement. 

The last important detail to discuss is the concept of local and global minima. When the 

cost function we are trying to minimize is convex, any local minima will be equal to the global 

minima by definition. However, for non-convex functions, we might stumble across a local 

minima as opposed to a global minima. Consider the following graphic take from Howie 

Choset’s Robot Kinematics and Dynamics class.  
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As you might observe, the initial position start state may affect our answer when 

performing gradient descent. This is because the gradient is different at each point and thus 

starting at a different point may take us in a different direction. With respect to stochastic and 

batch gradient descent, stochastic gradient has the property that it might jump out of local 

minima because it has a random aspect to it that makes the gradient more noisy. This has a 

variety of applications in machine learning where we are working with large data sets and 

gradient descent becomes very computationally intensive. 

In the context of this project, we came across some papers that were able to optimize 

gradient descent with the use of more parallel power. While gradient descent is generally a 

sequential algorithm, it seems like the use of parallelism can speed up the convergence rate of 

gradient descent and thus allow us to reach a much better approximation of the optimal value in 

the same wall clock time. This is due to the fact that multiple processing units allows us to 
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extract more information from our data set per clock cycle and thus allows us to make a more 

accurate update towards the optimal. The papers that inspired us to try this are linked in the 

references section.  

 

Approach: 
 

There were two aspects to the project (1) optimizing gradient descent on CPUs on Xeon 

Phi machines by making use of their fast clock speed and (2) optimizing gradient descent on 

NVIDIA GeForce GTX 1080 GPUs by making use of the large number of threads they have. We 

present our approaches on each of the architectures below. In both cases, we performed gradient 

descent on a regression problem, where our target function was (x) ax  bx  cx . f =  3 +  2 +  + d

Thus, the vector we tried to minimize consisted of the function’s coefficients, namely 

.​  Our cost function was .< , b, c, dw = a    > (w) (f (x ) (x ))J =  n
1 ∑

n

i =1
i − gw i

2  

 
Xeon Phi Machines: 
 

For the Xeon Phi Machines, our initial approach was to use the multiple processing units 

to compute the gradients quicker. Note that stochastic gradient descent chooses a point from our 

data set uniformly at random, computes the gradient, and performs the update. The first 

downside to this algorithm is that it is entirely serial since updates must occur sequentially. 

Therefore, for this project, we looked to increase the performance of our program by computing 

a more accurate estimate in a fixed amount of time. In terms of accuracy, the issue with 

stochastic gradient descent is that each update has a high variance because it is only using 
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information from one point as opposed to all the data like batch gradient descent does. Thus, we 

hypothesized that in the time we compute the gradient of one point, we can actually compute ​t 

gradients in parallel where ​t​ is the number of threads. Each thread can compute the gradient of a 

point and this will allow us to use information from ​t​ points at a time, as opposed to just once 

and thus allowing the steps to be more accurate. This approach, however, falls short due to the 

high communication required to average the gradients of the ​t​ threads together. The computation 

needed to compute the gradient at a point is dominated by the time needed to communicate. One 

of our proposed solutions for this problem of poor arithmetic intensity was to simply increase the 

amount of computation that each thread performed before they communicated. In other words, 

instead of computing the gradient after looking at a single point, each thread can compute the 

gradient based on ​k​ points in order to make a more informed step towards the minimum and to 

decrease the communication-to-computation ratio. These approaches deviated from the normal 

stochastic implementation, since the threads collectively compute a mini-batch of the points 

before updating the global estimate. Furthermore, if all of the points were partitioned evenly and 

disjointly, this approach would actually parallelize batch gradient descent. This was one 

approach we coded up using OpenMP. Throughout the paper, we reference this approach as 

Stochastic Gradient Descent with K Samples​. 

 

Our second parallel approach was taken from the first paper under references. Despite our 

efforts to increase the arithmetic intensity in the design outlined above, all the threads would still 

have to communicate after each iteration, which slowed down the code drastically. The 

aforementioned paper introduces a very simple strategy that completely absolves the need for 
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communication until the end. We do this by running the SGD completely independently on each 

thread for some large number of steps and then averaging the parameters. This does surprising 

well as can be seen in the results section. The correctness performance of this approach differs 

from the previous one because we only aggregate the resulting parameters of each thread at the 

very end. After each iteration of this approach, a thread cannot benefit from the results of the 

others since there is no communication during the descent. However, it can still run for less total 

iterations compared to the sequential implementation because the less accurate results of the 

individual threads are ultimately averaged out to an estimate that is closer to convergence. 

Throughout the paper, we reference this approach as ​Stochastic Gradient Descent Per Thread​. 

 

One huge problem with SGD is that its memory access is random. With larger and larger 

datasets, it’s almost certain you will get a cache miss when you randomly pick and access a point 

from your dataset. One way to alleviate this problem is to shuffle the data once on each thread 

randomly and then each thread can traverse its sequence of points in their respective order, which 

largely reduces the number of cache misses during descent. For a single iteration, shuffling the 

data once at the start of each thread’s computation is expensive for the same reason as the last 

approach: random memory access. However, after many iterations, we are able to see a 

noticeable speedup in the code, provided that we reuse the same initially shuffled order every 

time. Instead of randomly accessing points in each iteration causing cache misses at nearly every 

access, this new approach ultimately requires one expensive shuffle at the beginning, but every 

iteration of SGD updates is dramatically faster due to spatial locality. We were able to speed up 

the code by more than 40x in one case with this optimization. This speedup comes with a small 
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caveat though. The first pass of the sequence of points for each thread is somewhat similar to our 

other approaches for stochastic gradient descent because the points were randomly shuffled. So, 

traversing them is similar to randomly sampling without replacement. However, all subsequent 

passes of the data must traverse the same sequence in order to take advantage of locality. Thus, 

we don’t have a perfectly random selection of data as described by the original stochastic 

gradient descent algorithm, but we found this did not slow down our convergence rate. 

Throughout the paper, we reference this approach as ​Stochastic Gradient Descent by Epoch​. 

 

NVIDIA GeForce GTX 1080 GPU: 
 
We implemented all of the designs described above in CUDA as well in order to compare 

their performances. Additionally, we also implemented two other strategies that we thought 

would fit better for this Nvidia GPU architecture. The first strategy is a hybrid of the two 

approaches described in the Xeon Phi section. Given the two layers of parallelism in GPU 

namely blocks and threads, we thought we could use the idea of running different independent 

gradient descents at the block level and mini-batch gradient descent using shared memory at the 

thread level. Each thread would sample k points and at the end of each iteration, each block 

would update its gradient by averaging only its own threads’ estimates. After all the iterations are 

complete, the blocks would average their estimates of the parameters ​w​ to provide a final 

estimate. Throughout the paper, we reference this approach as ​Stochastic Gradient Descent By 

Block​. 
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The second approach was inspired from the paper as well. In this design, we again ran 

SGD for a fixed number of steps on each thread, but each thread did not have access to all the 

data. The entire dataset would first be randomly partitioned among the ​t​ threads launched. With 

their respective subset of the data, each thread would shuffle its subset at the start of each 

iteration and then perform a sequential pass over it, updating the gradient at each point. Thus, 

each thread computed an estimate for their subset of the data, and the estimates are aggregated at 

the end to produce a final prediction of the parameters. In this design, however, there is a 

tradeoff between speed and performance, which we analyzed in detail later in the results section. 

Throughout the paper, we reference this approach as ​Stochastic Gradient Descent With 

Partition​. 

 

Results: 
 

We did our regression analysis on two datasets. Both of the datasets were from the 

University of California Irvine Machine Learning Repository. The first dataset was called the 

Combined Cycle Power Plant Data Set​. It consisted of 9568 data points. From the dataset, we 

used the exhaust vacuum (V) attribute as x-coordinate and the average temperature (AT) 

attribute as the y-coordinate. The second data set was called the ​News Popularity in Multiple 

Social Media Platforms Data Set​ and consisted of 39644 data points. We used the Global 

Subjectivity attribute as the x-coordinate and the N Tokens Content as the y-coordinate. The 

features used were taken arbitrarily such that the cubic regression problem was relatively 

interesting. 
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We used R to visualize the data and find the reference parameters/mean-squared-error for 

each of the datasets. For the Power Plant data set, the reference polynomial was

with a mean-squared-error of .77921  1.231  615.29824  9.65123 y =  − 0 · x3 − 9 · x2 +  · x + 1  

15.09505​. For the News Popularity​ ​data set, the reference polynomial was 

with a mean-squared-error of 881.84  0852.72  11995.1  546.51y =  − 6 · x3 − 2 · x2 +  · x +   

206144.2. 

 
Batch Gradient Descent: 
 

We first started with some baseline measurements on batch gradient descent. We 

expected to see clear speedup here because batch gradient descent is a perfect parallel problem. 

If we have ​n​ points and ​t​ threads, then we can perform an update in ​O(n/t + t)​ time as opposed to 

the sequential ​O(n)​ time algorithm. As we can see from the plot below, this problem scales with 

the number of threads matching our theoretical result.  

 

9 



 

Figure 1: Plot of mean-squared-error over time for batch gradient descent using T = {1, 2, 4, 8, 
16, 32, 64} threads run on Xeon Phi. 

 

Stochastic Gradient Descent with K samples: 
 

The next design we implemented was stochastic gradient descent, but we varied how 

many points we sampled at a time before making an update. We generated two plots: one that 

varied ​k​ on just 1 thread, where k is the number of samples per update, and the other on 16 

threads. The two plots are below. 

 

 

Figure 2: Plot of mean-squared-error over time for stochastic gradient descent using k = {1, 2, 
4, 8, 16, 32} samples at a time on 1 thread run on Xeon Phi. 
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Figure 3: Plot of mean-squared-error over time for stochastic gradient descent using k = {1, 2, 
4, 8, 16, 32} samples at a time on 16 threads run on Xeon Phi. 

 
As we can see, sampling more points at a time doesn’t actually help us converge faster. 

This is an expected result because there is not that much information gain between 1 and 32 

points when the data set is so large, but each update is 32 times slower. Of course, our plots don’t 

indicate that sampling a single point is 32 times faster than sampling 32 points because we do 

expect to make a more accurate step, but the cost of that additional information outweighs the 

benefits. From the second plot, we can see that adding parallelism here actually slows down the 

computations even more. The ​n​ threads would average their results to compute the global 

estimate after each iteration, introducing a communication overhead that caused a 10x slowdown 

in our program. We were able to measure this piece of communication at each step to support our 

hypothesis for the cause of the program’s slowdown. We timed the computation time of each 
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thread and the total running time below. We can see that as we increased the number of samples 

the difference between the two measured times, which is equal to the communication time, is 

less and less significant. 

 

 

Figure 4: Graph of total execution time and computation time when running SGD with 16 
threads and k samples for k = {1, 2, 4, 8, 16, 32}. 
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Stochastic Gradient Descent Per Thread: 
 

 
Figure 5: Plot of mean-squared-error over time using the SGD per thread design with T = {1, 2, 

4, 8, 16} threads run on NVIDIA GeForce GTX 1080 GPU. 
 

This code was implemented on both CPUs and GPUs, but the graph is from the GPUs 

because we were able to test how this approach scaled with more threads to the max. We were 

only able to measure time on the device in terms of clock cycles, but we were able to find the 

specs of the NVIDIA GeForce GTX 1080 GPU and used its clock rate to convert clock cycles to 

seconds. From looking at the axis of the graph, we can already see that this implementation runs 

significantly faster than even our fastest parallelized batch code. Comparing the behaviors of 

using different threads, we can see that our results are consistent with our reference paper. As we 

increased the number of threads (or independent SGD calls), we were able to see an increase in 

performance, more specifically, the program was able to converge to a near-optimal MSE faster. 

This behavior generally scales with the number of threads used; however, it is evident that with 

too many threads the performance begins to plateau, which can also be seen in the paper. We 
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believe that this is because the estimates are ultimately still independently drawn from the same 

distribution and after a certain number of results, we will have enough points to represent the 

distribution and find its mean. Therefore, sampling even more points than that will not have a 

noticeable increase in result accuracy. 

 

Stochastic Gradient Descent over Epochs: 
 

Here we use the number of epochs run to analyze the algorithm’s convergence. This is 

because this algorithm by nature does not require any communication, but the act of calculating 

the MSE from the separate estimates on each thread at a certain point in time requires 

communication and affects the runtime of the algorithm itself. The time taken to run an Epoch on 

each thread is the same however. Thus, we graph the MSE vs. Number of Epochs. 

 

Figure 6: Plot of mean-squared-error over number of epochs using alternative SGD design with 
T = {1, 2, 3, 4, 8} threads run on Xeon Phi.  1

 

1 ​This design was run on the ​Combined Cycle Power Plant Data Set ​because each epoch only performed around 
10,000 updates. 
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This plot is similar to the previous approach in that the parallelism comes from running 

SGD independently for each thread and averaging the results at the end. However, the figure 

above uses the alternative implementation of SGD using epochs. The first thing to note is that we 

had to use the first data set for these plots. This is because the difference in this SGD algorithm is 

that one epoch consisted of ​n​ many updates to the gradient, where ​n​ is the number of points in 

the data set. Thus, the problem size for this graph is extremely important. Because our News 

Popularity data set was too large, consisting of around 40,000 data points, most models 

converged after just one epoch, yielding an uninteresting plot. Thus, we used the smaller 

Combined Cycle Power Plant Data Set​ for the figure above. 

 

From the different graphs, we can see that parallelizing over independent SGD calls had a 

much more significant impact in this epoch implementation compared to updating random 

points. We see that each program’s computed estimate yields a better performance as the number 

of threads increase. The subsequent epochs display similar trends across all numbers of threads 

because each thread is looking at the same data in the same order for these epochs. Therefore, 

each thread will update their estimates by the same scale from the second epoch onwards. We 

also get the similar result of diminishing returns after 8 threads, as the SGD per Thread graph in 

Figure 4 which uses the original algorithm of SGD. 

 
Stochastic Gradient Descent With Partition: 
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Figure 7: Plot of mean-squared-error over time using alternative SGD design with T = {1, 2, 3, 
4, 8, 16} threads run on NVIDIA GeForce GTX 1080 GPU. 

 
In the graph above, multiple threads have a slightly better performance than the 

sequential implementation, and as the number of threads increased it eventually plateaued as 

well. The performance was limited mainly by the design of our algorithm. Because as the 

number of threads increases, each thread receives a smaller and smaller subset of the data, it is 

not likely that training the model on fewer points would result in an accurate estimate 

representative of the entire dataset. This presents a cost-performance tradeoff because even 

though each thread can now compute their subset of the data faster since they receive fewer 

points, each thread would also compute a less accurate estimate for the same reason. 

 

Conclusion: 
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From our results across both architectures above, we concluded that none of our designs 

scaled with the number of processors used. While we observed faster convergence rates for a 

small number of additional processors, each of the designs reached a limit to their performance 

after around 8 or 16 threads. Therefore, we were unable to take advantage of the high division of 

labor that the GPU architecture had to offer. Instead, for our designs, it proved better to utilize 

the computational power and higher clock rate of the Xeon Phi machines to better optimize the 

performance and accuracy of our gradient descent. 

 

Credit: 
We both did 50% each. 
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