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Summary: 
 

We are going to create optimized implementations of gradient descent on both GPU and 
multi-core CPU platforms, and perform a detailed analysis of both systems’ performance 
characteristics. The GPU implementation will be done using CUDA, where as the multi-core 
CPU implementation will be done with OpenMP.  
 
Background:  
 

Gradient Descent is a technique used to find a minimum using numerical analysis in 
times where directly computing the minimum analytically is too hard or even infeasible. The 
idea behind the algorithm is simple. At any given point in time, you determine the effect of 
modifying your input variable on the cost you are trying to minimize. In the one dimensional 
case, if increasing the value of your input decreases your cost, then you increase the value of 
your input by a small step to get you closer to the minimum cost. Generalizing to higher 
dimensions, the gradient tells you the direction of the greatest increase on your cost function, so 
we move the input in the opposite direction to hopefully decrease the value of the cost function.  
 

Building on top of this idea, we have two kinds of gradient descent methods. One is 
called batch gradient descent and the other is stochastic gradient descent. Let’s discuss both. We 
can imagine we have some regression problem where we are trying to estimate some function 
f(x). We are given n labeled data points of the form (x​i​ , f(x​i​)). Our job is to find some estimator, 
g(x), of the desired function such that we minimize the squared error (f(x​i​) - g(x​i​))​2​.  Now in 
order to find the true gradient of our cost function, we would need to plug in all our points. This 
is what’s known as batch gradient descent. If n is large, however, this computation can be very 
expensive especially since at each time step we only make a small modification. Thus, it does not 
always make sense to doing such a heavy computation to make a tiny step forward. In contrast, 
stochastic gradient descent chooses a random data point to determine the gradient. This gradient 
is much noisier since it doesn’t have the whole picture, but it can greatly speed-up performance. 
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In most cases, it is best to start with stochastic gradient descent, but then eventually switch to 
batch for fine-grained movement.  
 

The last important detail to discuss is the concept of local and global minima. When the 
cost function we are trying to minimize is convex, any local minima will be equal to the global 
minima by definition. However, for non-convex functions, we might stumble across a local 
minima as opposed to a global minima. Consider the following graphic take from Howie 
Choset’s Robot Kinematics and Dynamics Class.  
 

 
 
As you might observe, the initial position start state may affect our answer when performing 
gradient descent. This is because the gradient is different at each point and thus starting at a 
different point may take us in a different direction. With respect to stochastic and batch gradient 
descent, stochastic gradient has the property that it might jump out of local minima because it 
has a random aspect to it that makes the gradient more noisy. This has a variety of applications in 
machine learning where we are working with large data sets and a gradient descent becomes very 
computationally intensive. 
 
Challenges: 
 

The challenges are more related to finding the best suited programming model given an 
architecture. This is because each architecture calls for a different implementation. With the high 
number of threads available to GPUs, we can potentially calculate the gradient with a larger 

 



 

number of points and make a more accurate step towards the optimal, but each update may be 
slower than on multi-core CPUs. In contrast, multi-core CPUs will have the advantage of making 
updates faster because there is no offload overhead involved. This tradeoff between correctness 
and speed presents an interesting challenge of finding the programming model that optimizes 
performance in each case.  
 

Another challenge of the project comes from the fact that we are working with large 
datasets, so how we organize our memory to hold all the data will be another area of focus for 
this project. For example, previous papers have stated that it may be beneficial to partition the 
data into disjoint subsets so each core or block on the GPU doesn’t have to share data. Of course, 
this may lead to less accurate updates since each core or block only has a part of the whole 
picture. However, the speedup gained from less sharing might still allow us to arrive closer to the 
optimal sooner. 
 
Resources: 
 

We will start off by implementing our gradient descent using CUDA on NVIDIA 
GeForce GTX 1080 GPUs and using OpenMP on Xeon Phi Machines. We will start the code 
from scratch since the actual implementation of the gradient descent isn't too complex and we 
may make several modifications to it based on the architecture. This assignment is an exploration 
of different system designs and architectures, therefore it does not make sense to build off 
someone else's code. We want full control of everything.  
 

There are several online papers about this topic. For now, we will use the following two 
papers for reference.  
 

1.  ​http://martin.zinkevich.org/publications/nips2010.pdf 
2.  ​https://arxiv.org/pdf/1802.08800.pdf 

 
The one thing we still have to figure out is how to obtain a good dataset. We want a data 

set that is large and minimizes a non-convex function, so we can observe cases where our 
gradient descent might fall into a local minimum as opposed to a global one. If time permits, we 
might run our program on other machines and measure performance on those as well. 
 
Goals and Deliverables: 
 

Our overall goal that we plan to achieve is to recreate the results of the papers mentioned 
above. The desired output of our program is a α = {1.5, 1.1, 1.01} approximation of the optimal 
solution and we want to examine the runtime it takes to get to those levels of correctness.  We 
aim for a runtime that is around 8x faster than the serial version. We chose this benchmark after 
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reading the papers linked above. According to their results, they achieved approximately a 12x 
speedup for their data set, so we expect to see similar results.  

 
Over the course of the project, we plan to implement a parallelized version of SGD on 

both GPUs using CUDA and multi-core CPUs using OpenMP and/or OpenMPI. On both 
architectures, we want to try a couple of designs. Listed are some of those designs: 

1. Load all the data on each core, compute the updated value in parallel based on a 
random data point on each core, and average their results to achieve better 
correctness. 

2. Partition the inputs, compute the updated value for each of the subsets in parallel, 
and average their results to achieve better correctness. 

3. The same as method 1, but compute k updates together on each core and then 
average their results. 

4. The same as method 2, but compute k updates together on each core and then 
average their results.  
 

For the poster presentation, we expect to have lots of graphs of our results. Specifically, 
we want to at least have the following graphs: 

1. Speedup vs Number of Threads for each Architecture 
2. Speedup vs Approximation Factor for each Architecture (Speedup of Max threads 

available to the machine with respect to 1 thread) 
3. Speedup vs Dataset size for each Architecture (Speedup of Max threads available 

to the machine with respect to 1 thread) 
 

If time permits, we also have some additional ideas that we could explore further. We can 
implement a mixture of batch and stochastic gradient descent to achieve a performance as good 
or better than the reference papers for some approximation of the optimal. In addition, we can 
look into OpenCL in order to run SGD on heterogeneous machines that have access to both 
GPUs and CPUs and measure performance there. 
 
Platform Choice: 
 

The goal of this project is to determine the performance tradeoffs of paralleling gradient 
descent on GPUs and CPUs. The reason we choose to work with  NVIDIA GeForce GTX 1080 
GPUs and Xeon Phi Machines is mainly because we are most familiar with the machines.  
 
Schedule:  
 

Week of 11/5 - 11/9: 

 



 

Find a couple data sets to test on 
Get a sequential version of the code working in C/C++ 
Get measurements on how long it takes to get within α = {1.5, 1.1, 1.01} of the 

optimal. 
 
Week of 11/12 - 11/16: 

Implement Parallel SGD using CUDA 
Implement all four algorithmic designs 
Get measurements on how long it takes to get within α = {1.5, 1.1, 1.01} of the 

optimal. 
 

Week of 11/19 - 11/23 (Week of Thanksgiving Break): 
Implement Parallel SGD using OpenMP and/or OpenMPI with just one of the 

four algorithmic designs discussed 
 
Week of 11/26 - 11/30: 

Implement all four algorithmic designs for the OpenMP version 
Get measurements on how long it takes to get within α = {1.5, 1.1, 1.01} of the 

optimal. 
 
Week of 12/3 - 12/7: 

Look into additional optimizations that can be done in each architecture in terms 
of how the data is organized/cached and make those optimizations  
 
Week of 12/10 - 12/14: 

Look into OpenCL if time permits or continue working on any of the previous 
tasks if behind. 

 


